

HINTS & SOLUTIONS WORKBOOK - 2

Stoiciometry-II (Redox Reactions)

Daily Tutorial Sheet	Level-0
----------------------	---------

1. Reverse the signs of oxidation potential to get the values of the reduction or electrode potentials. Thus,

$$E_{Zn|Zn^{2+}} = 0763V :: E_{Zn^{2+}|Zn}^{\circ} = -0.763V \text{ and } :: E_{Cd|Cd^{2+}}^{\circ} = 0.403V$$

$$E_{Cd^{2+}|Cd}^{\circ} = -0.403V$$

Since $Zn^{2+}|Zn$ electrode is at lower potential, therefore, it acts as the anode while $Cd^{2+}|Cd$ electrode with higher potential acts as the cathode.

In other words, Zn loses electrons and Cd^{2+} ion accepts them. Therefore, cell reaction is:

$$Zn + Cd^{2+} \longrightarrow Zn^{2+} + Cd$$

$$And \ E_{cell}^0 = E_{cd^{2+}|cd}^0 - E_{Zn^{2+}|Zn}^\circ = -0.403 - \left(-0.763\right) = +0.360V$$

2.
$$-0.46 = E^{\circ}_{Cu^{2+}|Cu} - E^{\circ}_{A\sigma^{+}|A\sigma}$$
 ...(i)

$$1.10 = E^{\circ}_{Cu^{2+}|Cu} - E^{\circ}_{Zn^{2+}|Zn} \qquad \qquad ...(ii)$$

Subtracting equation (i) from equation (ii), we have,

$$E_{cell}^{\circ} = 1.10 - (-0.46) = E_{Ag^{+}|Ag}^{\circ} - E_{Zn^{2+}|Zn}^{\circ} \text{ or } 1.56V = E_{Ag^{+}|Ag}^{\circ} - E_{Zn^{2+}|Zn}^{\circ}$$

In other words, $\,E^{\circ}\,\text{of the cell,}\,\,Zn\,|\,Zn^{2+}\big(M\big)\,|\,|\,Ag^{+}\big(M\big)\,|\,Ag\,,\,\text{is }1.56\,\,V.$

- Since, $Mg^{2+}(aq) \mid Mg$ electrode = $-2.36\,V$ is at a lower potential than $Al^{3+}(aq) \mid Al$ electrode = $-1.66\,V$, therefore, $Mg^{2+}(aq) \mid Mg$ electrode acts as the anode and $Al^{3+}(aq) \mid Al$ acts as the cathode. In other words, Mg loses electrons and Al^{3+} ion accepts electrons. Thus, the cell reaction is $3Mg + 2Al^{3+} \longrightarrow 3Mg^{2+} + 2Al$ and $E_{cell}^{\circ} = E_{Al^{3+}|Al}^{\circ} E_{Mg^{2+}|Mg}^{\circ} = -1.66 (-2.36) = +0.70V$
- 4. $E_{cell}^{\circ} = E_{Cu^{2+}|Cu}^{\circ} E_{Al^{3+}|Al}^{\circ} = 0.34 (-1.66) = 2.0V$
- 5. If the metal is to react with dil. H_2SO_4 (i.e., H^+ ions) to produce H_2 gas, the metal should have a lower electrode potential than that of standard hydrogen electrode, i.e., 0.0 V.
 - (i) Since, $E_{Cu^{2+}|Cu}^{\circ} = 0.34 \text{V}$ is higher than $E_{H^{+}|H_{2}}^{\circ} = 0.0 \text{V}$, therefore, Cu will not react with 1N $H_{2}SO_{4}$ to produce H_{2} gas.
 - (ii) Since, $E_{Pb^{2+}|Pb}^{\circ} = -0.13 \, V$ and $E_{H^{+}|H_{2}}^{\circ} = 0.0 \, V$, therefore, lead will react with $1 \, N \, H_{2}SO_{4}$ to produce H_{2} gas.
 - (iii) Since $E^{\circ}_{Fe^{2+}|Fe} = -0.44V$ and $E^{\circ}_{H^{+}|H_{2}} = 0.0V$, therefore iron will react with $1 \text{ N H}_{2}SO_{4}$ to produce H_{2} gas.
- **6.** Since, $E^{\circ}_{Zn^{2+}|Zn} = -E^{\circ}_{Zn,|Zn^{2+}} = -0.76V$, is at a lower potential than $E^{\circ}_{Cu^{2+}|Cu} = 0.34V$, therefore,

Zn can only lose electrons to Cu^{2+} ions. Conversely, Zn^{2+} cannot accept electrons from Cu and hence the following reaction will not occur. $Zn^{2+} + Cu \longrightarrow Zn + Cu^{2+}$

In other words, $ZnSO_4$ solution can be safely stored in a copper vessel.

Since, $E^{\circ}_{Ag^{+}|Ag} = +0.80V$ is higher than $E^{\circ}_{Cu^{2+}|Cu} = -E^{\circ}_{Cu|Cu^{2+}} = -(-0.34) = +0.34V$, therefore, Ag^{+} ions can easily accept electrons from Cu. In other words, the following reactions will occur. $Cu + 2Ag^{+} \longrightarrow Cu^{2+} + 2Ag$

Hence, 1 M AgNO₃ solution cannot be stirred with a copper spoon.

- **8.** Since, Cu will react with Ag⁺ ions, as discussed in Ans to Q.7 above, therefore AgNO₃ solution cannot be stored in copper vessel.
- Since, $E_{Zn|Zn^{2+}}^{\circ} = -E_{Zn^{2+}|Zn}^{\circ} = -0.76V$ is lower than $E_{Cu^{2+}|Cu}^{\circ}$, therefore, Zn will lose electrons and copper will accept them. In other words, the following reaction will occur, $Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$. Since, blue Cu^{2+} ions are consumed and colourless Zn^{2+} ions are produced during the above reaction, therefore, colour of $CuSO_4$ solution gets discharged when zinc rod is dipped in it.
- 10. $N \rightarrow -3 \text{ to } + 5$ $S \rightarrow -2 \text{ to } + 6$ $Cl \rightarrow -1 \text{ to } + 7$
- 11. In case of nitric acid, nitrogen is in maximum oxidation state of +5 and therefore, cannot be further oxidized. So, HNO_3 acts as an oxidizing agent only.

On the other hand, N is HNO_2 is in +3 oxidation state and therefore, can undergo either oxidation or reduction. So, HNO_2 acts both as an oxidizing as well as reducing agent.

- No. In both $Cr_2O_7^{2-}$ and CrO_4^{2-} , Cr is in + 6 oxidation state and therefore, there is no change in oxidation state.
- **13.** (i) $Zn \longrightarrow Zn^{2+} + 2e^-; Pb^{2+} + 2e^- \longrightarrow Pb$
 - (ii) $2I^- \longrightarrow I_2 + 2e^-; 2Fe^{3+} + 2e^- \longrightarrow Fe^{2+}$
 - (iii) $2\text{Na} \longrightarrow 2\text{Na}^+ + 2\text{e}^-; \text{Cl}_2 + 2\text{e}^- \longrightarrow 2\text{Cl}^-$
 - (iv) $Mg \longrightarrow Mg^{2+} + 2e^-; Cl_2 + 2e^- \longrightarrow 2Cl^-$
 - (v) $Zn \longrightarrow Zn^{2+} + 2e^{-}: 2H^{+} + 2e^{-} \longrightarrow H_{2}$
- **14.** The electrode to be chosen as the anode should have high oxidation potential.

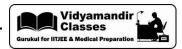
So, out of $Zn \mid Zn^{2+}$ and $Fe \mid Fe^{2+}$, the former has higher oxidation potential.

i.e.
$$E_{Zn|Zn^+}^{^{\circ}}$$
 = 0.76 V & $E_{Fe|Fe^{2+}}^{^{\circ}}$ = 0.44 V

The cathode should have higher reduction potential. So, Cu²⁺ | Cu can act as cathode.

So, cell reaction would be

$$Zn+Cu^{2+} {\longrightarrow} Zn^{2+}+Cu$$


$$E_{\text{cell}} = (0.76 + 0.34)V = 1.10V$$

In the internal circuit, the direction of flow of electrons will be from cathode to anode and from anode to cathode in the external circuit.

- **15.** $E_{Fe|Fe^{2+}} = 0.44V$; $E_{Zn|Zn^{2+}} = 0.76V$; $E_{Ni|Ni^{2+}}^{\circ} = 0.25V$
 - (i) Since oxidation potential of Fe | ${\rm Fe^{2^+}}$ is less than oxidation potential of ${\rm Zn}$ | ${\rm Zn^{2^+}}$,

 \therefore Fe cannot reduce Zn^{2+} ions.

(ii) Since oxidation potential of Fe $| Fe^{2+} |$ is higher than that Ni $| Ni^{2+} |$, so Fe can reduce $Ni^{2+} |$ ions.

- **16.** The standard reduction potential of the four metallic elements A, B, C and D have been given. Higher the reduction potential, lesser will be the electropositive character.
 - ∴ Decreasing order of electropositive character is B > C > D > A
- Since the reduction potential of Br_2 ($E^{\circ}_{Br_2|Br^-}=1.09\,V$) is higher than that of $I_2(E^{\circ}_{I_2|I^-}=0.54\,V)$, so, Br_2 will get reduced while I^- ions will undergo oxidation. So, the reaction would be

$$Br_2 + 2I^- \longrightarrow 2Br^- + I_2 \ (E^\circ = 0.55V)$$

18. (i) $E_{Zn^{2+}|Zn} = -0.76 \text{ V} \text{ and } E_{Cu^{2+}|Cu} = 0.34 \text{ V}$

Zinc will displace copper from its salt solution, copper sulphate solution should not be stored in a zinc vessel.

- (ii) Since reduction potential of $Ag^+ | Ag$ is higher than $Cu^{2+} | Cu$, so, copper ion will not be reduced. So, copper sulphate solution can be stored in silver vessel.
- (iii) Similar to the case of silver vessel, copper sulphate solution can be stored in gold vessel.
- 19. In case of Cu_2O , Cu is in +1 oxidation state. So, it can undergo both oxidation as well as reduction. That is why it can act both as an oxidant and reductant.

As an oxidant

0.5

$$Cu_2O + H_2 \longrightarrow 2Cu + H_2O$$

+1 0 As a reductant

20. Reduction $2MnO_4^- + 6e^- \longrightarrow 2MnO_2$

Oxidation $Br^- \longrightarrow BrO_3^- + 6e^-$

Complete redox reaction would be $2MnO_4^- + Br^- + H_2O \longrightarrow 2MnO_2 + BrO_3^- + 2OH^-$

- **21.** $2MnO_4^- + 6I^- + 4H_2O \longrightarrow 2MnO_4 + 3I_2 + 8OH^-$
- **22.** (a) $KI_3 \longrightarrow +1+3(x)=0$

$$x = +1/3$$

(b)
$$H_2S_4O_6 \longrightarrow 2(+1) + 4(x) + 6(-2) = 0$$

 $\Rightarrow 4x - 10 = 0 \Rightarrow x = 10/4$

(c)
$$Fe_3O_4 \longrightarrow 3(x) + 4(-2) = 0$$

$$\therefore \qquad x = +8/3$$

(d)
$$\overset{1}{\text{C}} \overset{2}{\text{H}_{3}} \overset{2}{\text{C}} \overset{1}{\text{H}_{2}} \text{OH} \xrightarrow{} 2(x) + 6(+1) + 1(-2) = 0$$

 $\Rightarrow 2x + 4 = 0 \Rightarrow 2x = -4$

So, sum of 0.5. of both carbon atoms is -4.

Oxidation number of C-1=-3

Oxidation number of C-2=-1

So, sum of oxidation states of both carbon atoms is zero.

Oxidation number of C-1=-3

Oxidation number of C-2=+3

- 23. Compounds in which elements are in higher oxidation states are unstable. So, they act as oxidizing agents. Here, Ag in AgF_2 is in unstable + 2 oxidation states.
- **24.** Alcohol will act as a solvent for toluene which is insoluble in aqueous medium.

(b) (i)
$$H_2SO_4 + Cl^- \longrightarrow HCl \uparrow + HSO_4^-$$
 (pungent smell)

(ii)
$$\begin{aligned} &\text{H}_2\text{SO}_4 + \text{Br}^- & \longrightarrow \text{HBr} + \text{HSO}_4^- \\ &\text{H}_2\text{SO}_4 + 2\text{HBr} & \longrightarrow \text{Br}_2 + \text{SO}_2 + 2\text{H}_2\text{O} \\ &\text{(OA)} \end{aligned}$$

- **25.** Higher the standard electrode potential, higher will be the reducing power.
 - $\therefore \qquad \text{Increasing order of reducing power is} \ \ \, \text{K}^+ < \text{Mg}^{2+} < \text{Cr}^{3+} < \text{Hg}^{2+}_2 < \text{Ag}^+$